Record grounded glacier retreat caused by an ice plain calving process

Ochwat, N. E. et al. Triggers of the 2022 Larsen B multi-year landfast sea ice breakout and initial glacier response. Cryosphere 18, 1709–1731 (2024).
Google Scholar
Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).
Google Scholar
Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, e2020GL091733 (2021).
Google Scholar
Glasser, N. F. et al. From ice-shelf tributary to tidewater glacier: continued rapid recession, acceleration and thinning of Röhss Glacier following the 1995 collapse of the Prince Gustav Ice Shelf, Antarctic Peninsula. J. Glaciol. 57, 397–406 (2011).
Google Scholar
Rott, H., Skvarca, P. & Nagler, T. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science 271, 788–792 (1996).
Google Scholar
Royston, S. & Gudmundsson, G. H. Changes in ice-shelf buttressing following the collapse of Larsen A Ice Shelf, Antarctica, and the resulting impact on tributaries. J. Glaciol. 62, 905–911 (2016).
Google Scholar
Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, 2004GL020697 (2004).
Google Scholar
Scambos, T. et al. Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats. Cryosphere 8, 2135–2145 (2014).
Google Scholar
Rankl, M., Fürst, J. J., Humbert, A. & Braun, M. H. Dynamic changes on the Wilkins Ice Shelf during the 2006–2009 retreat derived from satellite observations. Cryosphere 11, 1199–1211 (2017).
Google Scholar
Hulbe, C. L., Scambos, T. A., Youngberg, T. & Lamb, A. K. Patterns of glacier response to disintegration of the Larsen B ice shelf, Antarctic Peninsula. Glob. Planet. Change 63, 1–8 (2008).
Google Scholar
Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, 2004GL020670 (2004).
Google Scholar
Needell, C. & Holschuh, N. Evaluating the retreat, arrest, and regrowth of crane glacier against marine ice cliff process models. Geophys. Res. Lett. 50, e2022GL102400 (2023).
Google Scholar
Surawy-Stepney, T. et al. The effect of landfast sea ice buttressing on ice dynamic speedup in the Larsen B embayment, Antarctica. Cryosphere 18, 977–993 (2024).
Google Scholar
Fluegel, B. L. & Walker, C. The two-decade evolution of Antarctica’s Hektoria Glacier and its 2022 rapid retreat from satellite observations. Geophys. Res. Lett. 51, e2024GL110592 (2024).
Google Scholar
Bassis, J. N. & Walker, C. C. Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proc. R. Soc. A 468, 913–931 (2012).
Google Scholar
Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).
Google Scholar
Parizek, B. R. et al. Ice-cliff failure via retrogressive slumping. Geology 47, 449–452 (2019).
Google Scholar
Schoof, C. Marine ice sheet stability. J. Fluid Mech. 698, 62–72 (2012).
Google Scholar
Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).
Google Scholar
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).
Google Scholar
Brunt, K. M., Fricker, H. A. & Padman, L. Analysis of ice plains of the Filchner–Ronne Ice Shelf, Antarctica, using ICESat laser altimetry. J. Glaciol. 57, 965–975 (2011).
Google Scholar
Friedl, P., Weiser, F., Fluhrer, A. & Braun, M. H. Remote sensing of glacier and ice sheet grounding lines: a review. Earth Sci. Rev. 201, 102948 (2020).
Google Scholar
Crawford, A. J. et al. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nat. Commun. 12, 2701 (2021).
Google Scholar
Bassis, J. N., Berg, B., Crawford, A. J. & Benn, D. I. Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. Science 372, 1342–1344 (2021).
Google Scholar
Melton, S. M. et al. Meltwater drainage and iceberg calving observed in high-spatiotemporal resolution at Helheim Glacier, Greenland. J. Glaciol. 68, 812–828 (2022).
Google Scholar
Murray, T. et al. Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland: dynamics of glacier calving. J. Geophys. Res. Earth Surf. 120, 964–982 (2015).
Google Scholar
Batchelor, C. L. et al. Rapid, buoyancy-driven ice-sheet retreat of hundreds of metres per day. Nature 617, 105–110 (2023).
Google Scholar
Tuckett, P. A. et al. Reply to: ‘impact of marine processes on flow dynamics of northern Antarctic Peninsula outlet glaciers’ by Rott et al. Nat. Commun. 11, 2970 (2020).
Google Scholar
Alley, R. B. et al. Iceberg calving: regimes and transitions. Annu. Rev. Earth Planet. Sci. 51, 189–215 (2023).
Google Scholar
Sulak, D. J., Sutherland, D. A., Enderlin, E. M., Stearns, L. A. & Hamilton, G. S. Iceberg properties and distributions in three Greenlandic fjords using satellite imagery. Ann. Glaciol. 58, 92–106 (2017).
Google Scholar
Robel, A. A. Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving. Nat. Commun. 8, 14596 (2017).
Google Scholar
Rott, H. et al. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016. Cryosphere 12, 1273–1291 (2018).
Google Scholar
Wallis, B. J., Hogg, A. E., Zhu, Y. & Hooper, A. Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method. Cryosphere 18, 4723–4742 (2024).
Google Scholar
Anandakrishnan, S., Voigt, D., Alley, R. & King, M. Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf. Geophys. Res. Lett. 30, 1361 (2003).
Google Scholar
Voytenko, D. et al. Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry. J. Glaciol. 61, 301–308 (2015).
Google Scholar
Freer, B. I., Marsh, O. J., Hogg, A. E., Fricker, H. A. & Padman, L. Modes of Antarctic tidal grounding line migration revealed by ICESat-2 laser altimetry. Cryosphere 17, 4079–4101 (2023).
Google Scholar
Sergeant, A. et al. Monitoring Greenland ice sheet buoyancy-driven calving discharge using glacial earthquakes. Ann. Glaciol. 60, 75–95 (2019).
Google Scholar
Olsen, K. G. et al. Improved estimation of glacial‐earthquake size through new modeling of the seismic source. J. Geophys. Res. Earth Surf. 126, e2021JF006384 (2021).
Google Scholar
Nettles, M. & Ekström, G. Glacial earthquakes in Greenland and Antarctica. Annu. Rev. Earth Planet. Sci. 38, 467–491 (2010).
Google Scholar
Winberry, J. P. et al. Glacial earthquakes and precursory seismicity associated with Thwaites Glacier calving. Geophys. Res. Lett. 47, e2019GL086178 (2020).
Google Scholar
Parsons, R., Sun, S., Gudmundsson, G. H., Wuite, J. & Nagler, T. Quantifying the buttressing contribution of landfast sea ice and mélange to Crane Glacier, Antarctic Peninsula. Cryosphere 18, 5789–5801 (2024).
Google Scholar
Pfeffer, W. T. A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res. 112, 2006JF000590 (2007).
Google Scholar
O’Neel, S., Pfeffer, W. T., Krimmel, R. & Meier, M. Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat. J. Geophys. Res. 110, 2005JF000292 (2005).
Google Scholar
Catania, G. A. et al. Geometric controls on tidewater glacier retreat in central western Greenland. JGR Earth Surf. 123, 2024–2038 (2018).
Google Scholar
Chudley, T. R., Howat, I. M., King, M. D. & Negrete, A. Atlantic water intrusion triggers rapid retreat and regime change at previously stable Greenland glacier. Nat. Commun. 14, 2151 (2023).
Google Scholar
Milillo, P. et al. Rapid glacier retreat rates observed in West Antarctica. Nat. Geosci. 15, 48–53 (2022).
Google Scholar
Shuman, C. A., Berthier, E. & Scambos, T. A. 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol. 57, 737–754 (2011).
Google Scholar
Dussaillant, I. et al. Two decades of glacier mass loss along the Andes. Nat. Geosci. 12, 802–808 (2019).
Google Scholar
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (IPCC, Cambridge Univ. Press, 2021).
Graham, A. G. C. et al. Rapid retreat of thwaites glacier in the pre-satellite era. Nat. Geosci. 15, 706–713 (2022).
Google Scholar
Bindschadler, R., Vornberger, P. & Gray, L. Changes in the ice plain of Whillans Ice Stream, West Antarctica. J. Glaciol. 51, 620–636 (2005).
Google Scholar
Corr, H. F., Doake, C., Jenkins, A. & Vaughan, D. G. Investigations of an ‘ice plain’ in the mouth of Pine Island Glacier, Antarctica. J. Glaciol. 47, 51–57 (2001).
Google Scholar
Freer, B. I. D. et al. Coincident lake drainage and grounding line retreat at Engelhardt Subglacial Lake, West Antarctica. J. Geophys. Res. Earth Surf. 129, e2024JF007724 (2024).
Google Scholar
Fricker, H. A. et al. Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS, and ICESat. Antarct. Sci. 21, 515–532 (2009).
Google Scholar
Matsuoka, K., Skoglund, A. & Roth, G. Quantarctica [Simple Basemap] (Norwegian Polar Institute, 2018).
Gardner, A., Fahnestock, M. & Scambos, T. MEaSUREs ITS_LIVE Landsat image-pair glacier and ice sheet surface velocities. Version 1 Boulder, Colorado USA. NASA National Snow and Ice Data Center https://doi.org/10.5067/IMR9D3PEI28U (2022).
Bernat, M. et al. Geodetic mass balance of Mýrdalsjökull Ice Cap, 1999–2021. J.ökull. 73, 35–53 (2023).
Berthier, E., Scambos, T. A. & Shuman, C. A. Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophys. Res. Lett. 39, L13501 (2012).
Google Scholar
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J. & Morin, P. The reference elevation model of Antarctica. Cryosphere 13, 665–674 (2019).
Google Scholar
Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).
Google Scholar
Huss, M. & Farinotti, D. A high-resolution bedrock map for the Antarctic Peninsula. Cryosphere 8, 1261–1273 (2014).
Google Scholar
Shahateet, K., Navarro, F., Seehaus, T., Fürst, J. J. & Braun, M. Estimating ice discharge of the Antarctic Peninsula using different ice-thickness datasets. Ann. Glaciol. 64, 121–132 (2023).
Google Scholar
Luckman, A., Quincey, D. & Bevan, S. The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sens. Environ. 111, 172–181 (2007).
Google Scholar
Smith, B. et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter. Remote Sens. Environ. 233, 111352 (2019).
Google Scholar
Antropova, Y. K. et al. Grounding-line retreat of Milne Glacier, Ellesmere Island, Canada over 1966–2023 from satellite, airborne, and ground radar data. Remote Sens. Environ. 315, 114478 (2024).
Google Scholar
Gades, A. M., Raymond, C. F., Conway, H. & Jagobel, R. Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements. J. Glaciol. 46, 88–94 (2000).
Google Scholar
Copland, L. & Sharp, M. Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding. J. Glaciol. 47, 232–242 (2001).
Google Scholar
Walter, F. et al. Analysis of low-frequency seismic signals generated during a multiple-iceberg calving event at Jakobshavn Isbræ, Greenland. J. Geophys. Res. Earth Surf. 117, F01036 (2012).
Google Scholar
Krischer, L. et al. On-demand custom broadband synthetic seismograms. Seismol. Res. Lett. 88, 1127–1140 (2017).
Google Scholar
Radar Depth Sounder Data, Lawrence, Kansas, USA (CReSIS, 2024); http://data.cresis.ku.edu/
Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F. & Hale, R. IceBridge MCoRDS L2 ice thickness (IRMCR2, Version 1). NASA National Snow and Ice Data Center Distributed Active Archive Center https://doi.org/10.5067/GDQ0CUCVTE2Q (2010).
Smith, B. et al. ATLAS/ICESat-2 L3A land ice height. (ATL06, Version 6). NASA National Snow and Ice Data Center Distributed Active Archive Center https://doi.org/10.5067/ATLAS/ATL06.006 (2023).
Earth Resources Observation and Science (EROS) Center. Landsat 8-9 operational land imager/thermal infrared sensor level-1, collection 2. USGS https://doi.org/10.5066/P975CC9B (2020).
NASA/METI/AIST/Japan Spacesystems and US/Japan ASTER Science Team. ASTER level 1A data set – reconstructed, unprocessed instrument data. NASA Land Processes Distributed Active Archive Center https://doi.org/10.5067/ASTER/AST_L1A.003 (2001).
Ochwat, N. et al. ‘Hektoria and Green Glacier changes 2022-2023’ U.S. Antarctic Program (USAP) Data Center https://doi.org/10.15784/601973 (2025).
Wiens D., Nyblade A. & Aster R. IPY POLENET-Antarctica: investigating links between geodynamics and ice sheets. International Federation of Digital Seismograph Networks https://doi.org/10.7914/SN/YT_2007 (2007).
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale. Antarctic seismographic Argentinean Italian network – ASAIN. International Federation of Digital Seismograph Networks https://doi.org/10.7914/SN/AI (1992).
Albuquerque Seismological Laboratory/USGS. Global seismograph network (GSN – IRIS/USGS). International Federation of Digital Seismograph Networks https://doi.org/10.7914/SN/IU (1988).




