News UK

Record grounded glacier retreat caused by an ice plain calving process

  • Ochwat, N. E. et al. Triggers of the 2022 Larsen B multi-year landfast sea ice breakout and initial glacier response. Cryosphere 18, 1709–1731 (2024).

    Article 

    Google Scholar 

  • Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).

    Article 

    Google Scholar 

  • Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, e2020GL091733 (2021).

    Article 

    Google Scholar 

  • Glasser, N. F. et al. From ice-shelf tributary to tidewater glacier: continued rapid recession, acceleration and thinning of Röhss Glacier following the 1995 collapse of the Prince Gustav Ice Shelf, Antarctic Peninsula. J. Glaciol. 57, 397–406 (2011).

    Article 

    Google Scholar 

  • Rott, H., Skvarca, P. & Nagler, T. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science 271, 788–792 (1996).

    Article 
    CAS 

    Google Scholar 

  • Royston, S. & Gudmundsson, G. H. Changes in ice-shelf buttressing following the collapse of Larsen A Ice Shelf, Antarctica, and the resulting impact on tributaries. J. Glaciol. 62, 905–911 (2016).

    Article 

    Google Scholar 

  • Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, 2004GL020697 (2004).

    Article 

    Google Scholar 

  • Scambos, T. et al. Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats. Cryosphere 8, 2135–2145 (2014).

    Article 

    Google Scholar 

  • Rankl, M., Fürst, J. J., Humbert, A. & Braun, M. H. Dynamic changes on the Wilkins Ice Shelf during the 2006–2009 retreat derived from satellite observations. Cryosphere 11, 1199–1211 (2017).

    Article 

    Google Scholar 

  • Hulbe, C. L., Scambos, T. A., Youngberg, T. & Lamb, A. K. Patterns of glacier response to disintegration of the Larsen B ice shelf, Antarctic Peninsula. Glob. Planet. Change 63, 1–8 (2008).

    Article 

    Google Scholar 

  • Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, 2004GL020670 (2004).

    Article 

    Google Scholar 

  • Needell, C. & Holschuh, N. Evaluating the retreat, arrest, and regrowth of crane glacier against marine ice cliff process models. Geophys. Res. Lett. 50, e2022GL102400 (2023).

    Article 

    Google Scholar 

  • Surawy-Stepney, T. et al. The effect of landfast sea ice buttressing on ice dynamic speedup in the Larsen B embayment, Antarctica. Cryosphere 18, 977–993 (2024).

    Article 

    Google Scholar 

  • Fluegel, B. L. & Walker, C. The two-decade evolution of Antarctica’s Hektoria Glacier and its 2022 rapid retreat from satellite observations. Geophys. Res. Lett. 51, e2024GL110592 (2024).

    Article 

    Google Scholar 

  • Bassis, J. N. & Walker, C. C. Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proc. R. Soc. A 468, 913–931 (2012).

    Article 

    Google Scholar 

  • Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

    Article 
    CAS 

    Google Scholar 

  • Parizek, B. R. et al. Ice-cliff failure via retrogressive slumping. Geology 47, 449–452 (2019).

    Article 

    Google Scholar 

  • Schoof, C. Marine ice sheet stability. J. Fluid Mech. 698, 62–72 (2012).

    Article 
    CAS 

    Google Scholar 

  • Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).

    Article 

    Google Scholar 

  • Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).

    Article 

    Google Scholar 

  • Brunt, K. M., Fricker, H. A. & Padman, L. Analysis of ice plains of the Filchner–Ronne Ice Shelf, Antarctica, using ICESat laser altimetry. J. Glaciol. 57, 965–975 (2011).

    Article 

    Google Scholar 

  • Friedl, P., Weiser, F., Fluhrer, A. & Braun, M. H. Remote sensing of glacier and ice sheet grounding lines: a review. Earth Sci. Rev. 201, 102948 (2020).

    Article 

    Google Scholar 

  • Crawford, A. J. et al. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nat. Commun. 12, 2701 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bassis, J. N., Berg, B., Crawford, A. J. & Benn, D. I. Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. Science 372, 1342–1344 (2021).

    Article 
    CAS 

    Google Scholar 

  • Melton, S. M. et al. Meltwater drainage and iceberg calving observed in high-spatiotemporal resolution at Helheim Glacier, Greenland. J. Glaciol. 68, 812–828 (2022).

    Article 

    Google Scholar 

  • Murray, T. et al. Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland: dynamics of glacier calving. J. Geophys. Res. Earth Surf. 120, 964–982 (2015).

    Article 

    Google Scholar 

  • Batchelor, C. L. et al. Rapid, buoyancy-driven ice-sheet retreat of hundreds of metres per day. Nature 617, 105–110 (2023).

    Article 
    CAS 

    Google Scholar 

  • Tuckett, P. A. et al. Reply to: ‘impact of marine processes on flow dynamics of northern Antarctic Peninsula outlet glaciers’ by Rott et al. Nat. Commun. 11, 2970 (2020).

    Article 
    CAS 

    Google Scholar 

  • Alley, R. B. et al. Iceberg calving: regimes and transitions. Annu. Rev. Earth Planet. Sci. 51, 189–215 (2023).

    Article 
    CAS 

    Google Scholar 

  • Sulak, D. J., Sutherland, D. A., Enderlin, E. M., Stearns, L. A. & Hamilton, G. S. Iceberg properties and distributions in three Greenlandic fjords using satellite imagery. Ann. Glaciol. 58, 92–106 (2017).

    Article 

    Google Scholar 

  • Robel, A. A. Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving. Nat. Commun. 8, 14596 (2017).

    Article 

    Google Scholar 

  • Rott, H. et al. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016. Cryosphere 12, 1273–1291 (2018).

    Article 

    Google Scholar 

  • Wallis, B. J., Hogg, A. E., Zhu, Y. & Hooper, A. Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method. Cryosphere 18, 4723–4742 (2024).

    Article 

    Google Scholar 

  • Anandakrishnan, S., Voigt, D., Alley, R. & King, M. Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf. Geophys. Res. Lett. 30, 1361 (2003).

    Article 

    Google Scholar 

  • Voytenko, D. et al. Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry. J. Glaciol. 61, 301–308 (2015).

    Article 

    Google Scholar 

  • Freer, B. I., Marsh, O. J., Hogg, A. E., Fricker, H. A. & Padman, L. Modes of Antarctic tidal grounding line migration revealed by ICESat-2 laser altimetry. Cryosphere 17, 4079–4101 (2023).

    Article 

    Google Scholar 

  • Sergeant, A. et al. Monitoring Greenland ice sheet buoyancy-driven calving discharge using glacial earthquakes. Ann. Glaciol. 60, 75–95 (2019).

    Article 

    Google Scholar 

  • Olsen, K. G. et al. Improved estimation of glacial‐earthquake size through new modeling of the seismic source. J. Geophys. Res. Earth Surf. 126, e2021JF006384 (2021).

    Article 

    Google Scholar 

  • Nettles, M. & Ekström, G. Glacial earthquakes in Greenland and Antarctica. Annu. Rev. Earth Planet. Sci. 38, 467–491 (2010).

    Article 
    CAS 

    Google Scholar 

  • Winberry, J. P. et al. Glacial earthquakes and precursory seismicity associated with Thwaites Glacier calving. Geophys. Res. Lett. 47, e2019GL086178 (2020).

    Article 

    Google Scholar 

  • Parsons, R., Sun, S., Gudmundsson, G. H., Wuite, J. & Nagler, T. Quantifying the buttressing contribution of landfast sea ice and mélange to Crane Glacier, Antarctic Peninsula. Cryosphere 18, 5789–5801 (2024).

    Article 

    Google Scholar 

  • Pfeffer, W. T. A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res. 112, 2006JF000590 (2007).

    Article 

    Google Scholar 

  • O’Neel, S., Pfeffer, W. T., Krimmel, R. & Meier, M. Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat. J. Geophys. Res. 110, 2005JF000292 (2005).

    Article 

    Google Scholar 

  • Catania, G. A. et al. Geometric controls on tidewater glacier retreat in central western Greenland. JGR Earth Surf. 123, 2024–2038 (2018).

    Article 

    Google Scholar 

  • Chudley, T. R., Howat, I. M., King, M. D. & Negrete, A. Atlantic water intrusion triggers rapid retreat and regime change at previously stable Greenland glacier. Nat. Commun. 14, 2151 (2023).

    Article 
    CAS 

    Google Scholar 

  • Milillo, P. et al. Rapid glacier retreat rates observed in West Antarctica. Nat. Geosci. 15, 48–53 (2022).

    Article 
    CAS 

    Google Scholar 

  • Shuman, C. A., Berthier, E. & Scambos, T. A. 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol. 57, 737–754 (2011).

    Article 

    Google Scholar 

  • Dussaillant, I. et al. Two decades of glacier mass loss along the Andes. Nat. Geosci. 12, 802–808 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (IPCC, Cambridge Univ. Press, 2021).

  • Graham, A. G. C. et al. Rapid retreat of thwaites glacier in the pre-satellite era. Nat. Geosci. 15, 706–713 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bindschadler, R., Vornberger, P. & Gray, L. Changes in the ice plain of Whillans Ice Stream, West Antarctica. J. Glaciol. 51, 620–636 (2005).

    Article 

    Google Scholar 

  • Corr, H. F., Doake, C., Jenkins, A. & Vaughan, D. G. Investigations of an ‘ice plain’ in the mouth of Pine Island Glacier, Antarctica. J. Glaciol. 47, 51–57 (2001).

    Article 

    Google Scholar 

  • Freer, B. I. D. et al. Coincident lake drainage and grounding line retreat at Engelhardt Subglacial Lake, West Antarctica. J. Geophys. Res. Earth Surf. 129, e2024JF007724 (2024).

    Article 

    Google Scholar 

  • Fricker, H. A. et al. Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS, and ICESat. Antarct. Sci. 21, 515–532 (2009).

    Article 

    Google Scholar 

  • Matsuoka, K., Skoglund, A. & Roth, G. Quantarctica [Simple Basemap] (Norwegian Polar Institute, 2018).

  • Gardner, A., Fahnestock, M. & Scambos, T. MEaSUREs ITS_LIVE Landsat image-pair glacier and ice sheet surface velocities. Version 1 Boulder, Colorado USA. NASA National Snow and Ice Data Center https://doi.org/10.5067/IMR9D3PEI28U (2022).

  • Bernat, M. et al. Geodetic mass balance of Mýrdalsjökull Ice Cap, 1999–2021. J.ökull. 73, 35–53 (2023).

    Google Scholar 

  • Berthier, E., Scambos, T. A. & Shuman, C. A. Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophys. Res. Lett. 39, L13501 (2012).

    Article 

    Google Scholar 

  • Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J. & Morin, P. The reference elevation model of Antarctica. Cryosphere 13, 665–674 (2019).

    Article 

    Google Scholar 

  • Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

    Article 
    CAS 

    Google Scholar 

  • Huss, M. & Farinotti, D. A high-resolution bedrock map for the Antarctic Peninsula. Cryosphere 8, 1261–1273 (2014).

    Article 

    Google Scholar 

  • Shahateet, K., Navarro, F., Seehaus, T., Fürst, J. J. & Braun, M. Estimating ice discharge of the Antarctic Peninsula using different ice-thickness datasets. Ann. Glaciol. 64, 121–132 (2023).

    Article 

    Google Scholar 

  • Luckman, A., Quincey, D. & Bevan, S. The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sens. Environ. 111, 172–181 (2007).

    Article 

    Google Scholar 

  • Smith, B. et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter. Remote Sens. Environ. 233, 111352 (2019).

    Article 

    Google Scholar 

  • Antropova, Y. K. et al. Grounding-line retreat of Milne Glacier, Ellesmere Island, Canada over 1966–2023 from satellite, airborne, and ground radar data. Remote Sens. Environ. 315, 114478 (2024).

    Article 

    Google Scholar 

  • Gades, A. M., Raymond, C. F., Conway, H. & Jagobel, R. Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements. J. Glaciol. 46, 88–94 (2000).

    Article 

    Google Scholar 

  • Copland, L. & Sharp, M. Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding. J. Glaciol. 47, 232–242 (2001).

    Article 

    Google Scholar 

  • Walter, F. et al. Analysis of low-frequency seismic signals generated during a multiple-iceberg calving event at Jakobshavn Isbræ, Greenland. J. Geophys. Res. Earth Surf. 117, F01036 (2012).

    Article 

    Google Scholar 

  • Krischer, L. et al. On-demand custom broadband synthetic seismograms. Seismol. Res. Lett. 88, 1127–1140 (2017).

    Article 

    Google Scholar 

  • Radar Depth Sounder Data, Lawrence, Kansas, USA (CReSIS, 2024); http://data.cresis.ku.edu/

  • Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F. & Hale, R. IceBridge MCoRDS L2 ice thickness (IRMCR2, Version 1). NASA National Snow and Ice Data Center Distributed Active Archive Center https://doi.org/10.5067/GDQ0CUCVTE2Q (2010).

  • Smith, B. et al. ATLAS/ICESat-2 L3A land ice height. (ATL06, Version 6). NASA National Snow and Ice Data Center Distributed Active Archive Center https://doi.org/10.5067/ATLAS/ATL06.006 (2023).

  • Earth Resources Observation and Science (EROS) Center. Landsat 8-9 operational land imager/thermal infrared sensor level-1, collection 2. USGS https://doi.org/10.5066/P975CC9B (2020).

  • NASA/METI/AIST/Japan Spacesystems and US/Japan ASTER Science Team. ASTER level 1A data set – reconstructed, unprocessed instrument data. NASA Land Processes Distributed Active Archive Center https://doi.org/10.5067/ASTER/AST_L1A.003 (2001).

  • Ochwat, N. et al. ‘Hektoria and Green Glacier changes 2022-2023’ U.S. Antarctic Program (USAP) Data Center https://doi.org/10.15784/601973 (2025).

  • Wiens D., Nyblade A. & Aster R. IPY POLENET-Antarctica: investigating links between geodynamics and ice sheets. International Federation of Digital Seismograph Networks https://doi.org/10.7914/SN/YT_2007 (2007).

  • Istituto Nazionale di Oceanografia e di Geofisica Sperimentale. Antarctic seismographic Argentinean Italian network – ASAIN. International Federation of Digital Seismograph Networks https://doi.org/10.7914/SN/AI (1992).

  • Albuquerque Seismological Laboratory/USGS. Global seismograph network (GSN – IRIS/USGS). International Federation of Digital Seismograph Networks https://doi.org/10.7914/SN/IU (1988).

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button