Climate change shifts the North Pacific storm track polewards

Salathe, E. P. Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys. Res. Lett. 33, L19820 (2006).
Google Scholar
Wise, E. K. & Dannenberg, M. P. Reconstructed storm tracks reveal three centuries of changing moisture delivery to North America. Sci. Adv. 3, e1602263 (2017).
Google Scholar
Chang, E. K. M., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. 117, D23118 (2012).
Google Scholar
Lehmann, J., Coumou, D., Frieler, K., Eliseev, A. V. & Levermann, A. Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett. 9, 084002 (2014).
Google Scholar
Tamarin-Brodsky, T. & Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 10, 908–913 (2017).
Google Scholar
Harvey, B. J., Cook, P., Shaffrey, L. C. & Schiemann, R. The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. 125, e32701 (2020).
Google Scholar
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Graham, N. E. & Diaz, H. F. Evidence for intensification of North Pacific winter cyclones since 1948. Bull. Am. Meteor. Soc. 82, 1869–1893 (2001).
Google Scholar
Tilinina, N., Gulev, S. K., Rudeva, I. & Koltermann, P. Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J. Clim. 26, 6419–6438 (2013).
Google Scholar
Chang, E. K. M. & Yau, A. M. W. Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets. Clim. Dyn. 47, 1435–1454 (2016).
Google Scholar
Wang, J., Kim, H. & Chang, E. K. M. Changes in Northern Hemisphere winter storm tracks under the background of Arctic amplification. J. Clim. 30, 3705–3724 (2017).
Google Scholar
Battalio, J. M. & Lora, J. M. Increases in the local eddy energetics of the extratropical atmosphere over the last four decades. J. Clim. 37, 3283–3304 (2024).
Hartmann, D. L. Global Physical Climatology 2nd edn (Academic Press, 2016).
Hazeleger, W., Seager, R., Visbeck, M., Naik, N. & Rodgers, K. Impact of the midlatitude storm track on the upper Pacific Ocean. J. Phys. Oceanogr. 31, 616–636 (2001).
Google Scholar
Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5, 17491 (2015).
Google Scholar
Chang, E. K. M., Ma, C., Zheng, C. & Yau, A. M. W. Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett. 43, 2200–2208 (2016).
Google Scholar
Dannenberg, M. P. & Wise, E. K. Shifting Pacific storm tracks as stressors to ecosystems of western North America. Glob. Change Biol. 23, 4896–4906 (2017).
Google Scholar
Chemke, R. & Polvani, L. M. Opposite tropical circulation trends in climate models and in reanalyses. Nat. Geosci. 12, 528–532 (2019).
Google Scholar
Grise, K. M. & Davis, S. M. Hadley cell expansion in CMIP6 models. Atmos. Chem. Phys. 20, 5249–5268 (2020).
Google Scholar
Chemke, R. & Yuval, J. Human-induced weakening of the Northern Hemisphere tropical circulation. Nature 617, 529–532 (2023).
Google Scholar
Blackport, R. & Fyfe, J. C. Climate models fail to capture strengthening wintertime North Atlantic jet and impacts on Europe. Sci. Adv. 8, eabn3112 (2022).
Google Scholar
Chemke, R. & Coumou, D. Human influence on the recent weakening of storm tracks in boreal summer. npj Clim. Atmos. Sci. 7, 86 (2024).
Google Scholar
Held, I. M. & GFD/2000 Fellows. The General Circulation of the Atmosphere (Woods Hole Oceanographic Institute, 2000).
Vallis, G. K. Atmospheric and Oceanic Fluid Dynamics (Cambridge Univ. Press, 2006).
Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).
Google Scholar
Cox, P. M., Huntingford, C. & Williamson, M. S. Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature 553, 319–322 (2018).
Google Scholar
Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).
Google Scholar
Tselioudis, G., Rossow, W. B., Bender, F., Oreopoulos, L. & Remillard, J. Oceanic cloud trends during the satellite era and their radiative signatures. Clim. Dyn. 62, 9319–9332 (2024).
Google Scholar
Tamarin-Brodsky, T., Hodges, K., Hoskins, B. J. & Shepherd, T. G. A dynamical perspective on atmospheric temperature variability and its response to climate change. J. Clim. 32, 1707–1724 (2019).
Google Scholar
Chemke, R. Persistent austral winter storm track weakening beyond doubling of CO2 concentrations. Nat. Commun. 16, 1935 (2025).
Google Scholar
Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).
Google Scholar
Watanabe, M. et al. Possible shift in controls of the tropical Pacific surface warming pattern. Nature 630, 315–324 (2024).
Google Scholar
Ossó, A. et al. Advancing our understanding of eddy-driven jet stream responses to climate change—a roadmap. Curr. Clim. Change Rep. 11, 2 (2024).
Google Scholar
Tamarin, T. & Kaspi, Y. The poleward shift of storm tracks under global warming: a Lagrangian perspective. Geophys. Res. Lett. 44, 10666–10674 (2017).
Google Scholar
Voigt, A. & Shaw, T. A. Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci. 8, 102–106 (2015).
Google Scholar
Po-Chedley, S. & Fu, Q. Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites. Environ. Res. Lett. 7, 044018 (2012).
Google Scholar
Woollings, T., Drouard, M., O’Reilly, C. H., Sexton, D. M. H. & McSweeney, C. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Commun. Earth Environ. 4, 125 (2023).
Google Scholar
Patterson, M. & O’Reilly, C. H. Climate models struggle to simulate observed North Pacific jet trends, even accounting for tropical Pacific sea surface temperature trends. Geophys. Res. Lett. 52, e2024GL113561 (2025).
Google Scholar
Chemke, R., Zanna, L., Orbe, C., Sentman, L. T. & Polvani, L. M. The future intensification of the North Atlantic winter storm track: the key role of dynamic ocean coupling. J. Clim. 35, 2407–2421 (2022).
Google Scholar
Chemke, R. The future poleward shift of Southern Hemisphere summer mid-latitude storm tracks stems from ocean coupling. Nat. Commun. 13, 1730 (2022).
Google Scholar
Connelly, D. S. & Gerber, E. P. Regression forest approaches to gravity wave parameterization for climate projection. J. Adv. Mod. Earth Syst. 16, e2023MS004184 (2024).
Google Scholar
Priestley, M. D. K. et al. An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Clim. 33, 6315–6343 (2020).
Google Scholar
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498 (2012).
Google Scholar
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Google Scholar
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Kosaka, Y. et al. The JRA-3Q reanalysis. J. Meteor. Soc. Jpn 102, 49–109 (2024).
Google Scholar
Kanamitsu, M. et al. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteor. Soc. 83, 1631–1643 (2002).
Google Scholar
Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Google Scholar
Saha, S. et al. The NCEP Climate Forecast System Version 2. J. Clim. 27, 2185–2208 (2014).
Google Scholar
Freeman, E. et al. ICOADS Release 3.0: a major update to the historical marine climate record. Int. J. Climatol. 37, 2211–2232 (2017).
Google Scholar
Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348, 324–327 (2015).
Google Scholar
Chemke, R. & Ming, Y. Large atmospheric waves will get stronger, while small waves will get weaker by the end of the 21st century. Geophys. Res. Lett. 47, e2020GL090441 (2020).
Google Scholar
Chemke, R., Ming, Y. & Yuval, J. The intensification of winter mid-latitude storm tracks in the Southern Hemisphere. Nat. Clim. Change 12, 553–557 (2022).
Google Scholar
Chemke, R. Centennial-scale recovery of the North Atlantic summer storm track weakening. Geophys. Res. Lett. 51, e2024GL109801 (2024).
Google Scholar
Held, I. M. & Suarez, M. J. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteor. Soc. 75, 1825–1830 (1994).
Google Scholar
Lorenz, E. N. Available potential energy and the maintenance of the general circulation. Tellus 7, 157–167 (1955).
Google Scholar
Thompson, D. W. J. & Li, Y. Baroclinic and barotropic annular variability in the Northern Hemisphere. J. Atmos. Sci. 72, 1117–1136 (2015).
Google Scholar
Boljka, L., Shepherd, T. G. & Blackburn, M. On the coupling between barotropic and baroclinic modes of extratropical atmospheric variability. J. Atmos. Sci. 75, 1853–1871 (2018).
Google Scholar
Simpson, I. R. et al. Emergent constraints on the large-scale atmospheric circulation and regional hydroclimate: do they still work in CMIP6 and how much can they actually constrain the future? J. Clim. 34, 6355–6377 (2021).
Google Scholar
Chemke, R. & Yuval, J. Atmospheric circulation to constrain subtropical precipitation projections. Nat. Clim. Change 15, 287–292 (2025).
Google Scholar
Chemke, R. Meridional gradient. Zenodo https://doi.org/10.5281/zenodo.17476128 (2025).



