3D nanolithography with metalens arrays and spatially adaptive illumination

Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).
Google Scholar
Kim, S., Kubicek, R. & Bergbreiter, S. 3D-printed electrostatic microactuators for flexible microsystems. Adv. Funct. Mater. 33, 202304991 (2023).
Google Scholar
Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4, 901–915 (2020).
Google Scholar
Xu, S. et al. 3D-printed micro ion trap technology for quantum information applications. Nature 645, 362–368 (2025).
Google Scholar
Qin, C. et al. High efficiency laser-driven proton sources using 3D-printed micro-structure. Commun. Phys. 5, 124 (2022).
Google Scholar
Jiang, L. J., Campbell, J. H., Lu, Y. F., Bernat, T. & Petta, N. Direct writing target structures by two-photon polymerization. Fusion Sci. Technol. 70, 295–309 (2017).
Google Scholar
Vidler, C. et al. Dynamic interface printing. Nature 634, 1096–1102 (2024).
Google Scholar
Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).
Google Scholar
Jung, W. et al. Three-dimensional nanoprinting via charged aerosol jets. Nature 592, 54–59 (2021).
Google Scholar
Kronenfeld, J. M., Rother, L., Saccone, M. A., Dulay, M. T. & DeSimone, J. M. Roll-to-roll, high-resolution 3D printing of shape-specific particles. Nature 627, 306–312 (2024).
Google Scholar
Xia, X. et al. Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019).
Google Scholar
Zhou, W. et al. 3D polycatenated architected materials. Science 387, 269–277 (2025).
Google Scholar
Han, F. et al. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 378, 1325–1331 (2022).
Google Scholar
Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).
Google Scholar
Somers, P. et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light Sci. Appl. 10, 199 (2021).
Google Scholar
Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).
Google Scholar
Ouyang, W. et al. Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023).
Google Scholar
Zhang, L. et al. High-throughput two-photon 3D printing enabled by holographic multi-foci high-speed scanning. Nano Lett. 24, 2671–2679 (2024).
Google Scholar
Kiefer, P. A multi-photon (7 × 7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens array. Light Adv. Manuf. 4, 28–41 (2024).
Yang, S. et al. Parallel two-photon lithography achieving uniform sub-200 nm features with thousands of individually controlled foci. Opt. Express 31, 14174–14184 (2023).
Google Scholar
Jiao, B. et al. Acousto-optic scanning spatial-switching multiphoton lithography. Int. J. Extreme Manuf. 5, 035008 (2023).
Google Scholar
Arnoux, C. et al. Understanding and overcoming proximity effects in multi-spot two-photon direct laser writing. Add. Manuf. 49, 102491 (2022).
Wang, X. et al. 3D nanolithography via holographic multi-focus metalens. Laser Photonics Rev. 18, 2400181 (2024).
Google Scholar
Walsh, M. E., Zhang, F., Menon, R. & Smith, H. I. in Nanolithography (ed. Feldman, M.) 179–193 (Woodhead Publishing, 2014).
Sugioka, K. & Cheng, Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev. 1, 041303 (2014).
Google Scholar
Gu, S., Chen, B., Xu, X., Han, F. & Chen, S. C. 3D nanofabrication via directed material assembly: mechanism, method, and future. Adv. Mater. 37, 2312915 (2025).
Google Scholar
Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).
Google Scholar
Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).
Google Scholar
Fu, J. et al. Supercritical metalens at h-line for high-resolution direct laser writing. Opto-Electron. Sci. 3, 230035 (2024).
Google Scholar
Chen, B. et al. 4H-SiC metalens: mitigating thermal drift effect in high-power laser irradiation. Adv. Mater. 37, 2412414 (2025).
Google Scholar
Zhou, Y., Mao, C., Gershnabel, E., Chen, M. & Fan, J. A. Large-area, high-numerical-aperture, freeform metasurfaces. Laser Photonics Rev. 18, 2300988 (2024).
Google Scholar
Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).
Google Scholar
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).
Google Scholar
Zhang, L., Liu, J., Gong, W., Jiang, H. & Liu, S. Diffraction based single pulse measurement of air ionization dynamics induced by femtosecond laser. Opt. Express 29, 18601–18610 (2021).
Google Scholar
Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7, 22–44 (2013).
Google Scholar
3DBenchy. https://www.3dbenchy.com/ (2024).
Zhang, P. et al. Mechanical design and energy absorption performances of rational gradient lattice metamaterials. Compos. Struct. 277, 114606 (2021).
Google Scholar
Liu, Y. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019).
Google Scholar
Wang, P. et al. Direct-print 3D electrodes for large-scale, high-density, and customizable neural interfaces. Adv. Sci. 12, 2408602 (2025).
Google Scholar
Dehaeck, S., Scheid, B. & Lambert, P. Adaptive stitching for meso-scale printing with two-photon lithography. Addit. Manuf. 21, 589–597 (2018).
Google Scholar
Dudukovic, N. A. et al. Cellular fluidics. Nature 595, 58–65 (2021).
Google Scholar
Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023).
Google Scholar
Gibson, L. J. & Ashby, M. F. Cellular Solids 2nd edn (Cambridge Univ. Press, 2014).
Patel, Z. S., Alrashed, A. O., Dwivedi, K., Salviato, M. & Meza, L. R. Rethinking ductility—a study into the size-affected fracture of additively manufactured polymers. Addit. Manuf. 84, 104113 (2024).
Google Scholar
Dai, V. & Zakhor, A. in Emerging Lithographic Technologies IV Vol. 3997, 467–477 (SPIE, 2000).
Liu, H.-I., Dai, V., Zakhor, A. & Nikolic, B. in Emerging Lithographic Technologies X Vol. 6151, 632–645 (SPIE, 2006).
Nanoscribe Photonic Professional GT2. https://www.nanoscribe.com/en/products/photonic-professional-gt2/ (2025).
Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photon. 16, 784–791 (2022).
Google Scholar
Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photon. 15, 932–938 (2021).
Google Scholar
Zheng, X. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).
Google Scholar
Hugonin, J. P. & Lalanne, P. RETICOLO software for grating analysis. Preprint at https://arxiv.org/abs/2101.00901 (2025).
Holzwarth, C., Barwicz, T. & Smith, H. I. Optimization of hydrogen silsesquioxane for photonic applications. J. Vac. Sci. Technol. B 25, 2658–2661 (2007).
Google Scholar
Kawamoto, R., Andò, E., Viggiani, G. & Andrade, J. E. Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016).
Google Scholar
Choi, W. J. et al. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater. 18, 820–826 (2019).
Google Scholar
Choi, W. J., Lee, S. H., Cha, M. & Kotov, N. A. Chiral kirigami for bend-tolerant reconfigurable hologram with continuously variable chirality measures. Adv. Mater. 36, e2401131 (2024).
Google Scholar
Choi, W. et al. Helical photonic metamaterials for encrypted chiral holograms. Adv. Sci. 12, e07931 (2025).
Google Scholar




